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On possible gradient approximations to the one-dimensional
kinetic energy density functional compatible with the
differential virial theorem
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Department of Theoretical Chemistry, University of Ulm, D-7900 Ulm, Germany
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Abstract. When the kinetic energy density £, (defined positive definite) of a system of
one-dimensional, non-interacting fermions is approximated by an ordinary function of the
density p, and of the lowest n derivatives of p, ¢, =0 can satisfy the differential virial
theorem for arbitrary density distributions only if g, actually depends on p and p’ only.
Thus the case n > 1 is ruled out, and one is left with the result e, = kp” + p~/(8p) (k =0)
already obtained in previous work.

The construction of the kinetic energy density functional (KEDF) ¢, has been a challenge
in density functional theory since its very beginning [1]-[3]. Since it seems impossible
to obtain the exact KEDF, one has to resort to approximations.

In one of the most important approximations, £,(x) at some point x is expressed
by the fermion density p and by its lowest derivatives taken as the same point x. In
one dimension, this means that

ex(x)=f(p(x), p'(x),..., p""(x)) (1)
with f being an ordinary function of n variables.
For n =0, 1 and 2, one of the authors [4] investigated the most general function f
compatible with the differential virial theorem [5], [6]
ek(x)=3p"(x) =3V'(x)p(x) (2)
where V(x) is the one-body potential in which the particles are moving. Equation (2)
is valid in this form if the positive definite expression
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is used for a system of N fermions occupying the bound states ¢; singly up to Uy.
When equation (2) is combined with the Euler equation of density functional theory
the potential can be eliminated yielding [4]
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This equation governs the dependence of f upon the variables p, p',.. ., p'"" which

are allowed to take on independently arbitrary values each (except for p being =0).
For n=<2, it turned out that

€k=Kp3+g_ (5)
fol
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(x =0 indetermined constant) is the most general expression among the class (1) of
functions. Especially, in the case of n =2, one finds that p” actually cannot occur in
€, on account of the constraint £, = 0.

In this addendum, this result is generalized to arbitrary n. Thus we shall prove the
following theorem.

Theorem. If ¢, is approximated by an expression of the form (1) with n =2 then the
requirements both of

(i) compatibility with the differential virial theorem (2)

(ii) positive definiteness (3)
imply that g, actually is dependent upon p and p’ only, i.e. that ¢, is given by (5).

Proof. Introducing the notation

e el ®)
and

I j;ilﬁ (7)
etc, equation (4) reads

T [(-1790,, - 26" f] = ~p" (8)

Let us now look for the highest derivative occurring in @, ,. For A =1 we have that
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=R(p,p,... ,p("”')'*'fun(p, o)., p(n))p(n+2) 9)

where R stands for an expression not further specified which, however, contains no
terms with derivatives of order n +2. Differentiating further and focusing on the term
associated with the highest derivative only we evidently can write

0,.=R(p,p'....0" " N+ fonlpp's . p ™ )p AT, (10)
Therefore the only term involving the highest derivative p>""" in equation (8) is
given by

(=1)"0,, =(=1)"p[R(p, p', ..., p"" )+ fuup*" V'] (11)
(for n=2). If equation (8) is to hold identically with respect to all variables
PPy, p*" 1 it follows that the coefficient of p'*"*!' has to vanish, i.e.

(92
f;m = f 750- (12)
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Thus f must be linear with respect to p'"’,

e=alp,p,....p" "V +Bpps... p" '™ (13)

where o and B8 are some functions not depending on p'"’.

Condition (3), however, rules out linear dependence of ¢, upon p'”’ (and, likewise,
upon any p'”', ¥>0). Otherwise ¢, could become negative for sufficiently negative
p'"™ at some point, in contrast to the requirement that £, =0 for all density functions.

Thus
B=0 (14)

and hence &, can depend at most on p,...,p'" '. However, repeating the above
arguments we finally end up with the result that ¢, is allowed to depend on p and p’
only. This proves our theorem.
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