On possible gradient approximations to the one-dimensional kinetic energy density functional compatible with the differential virial theorem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 235939
(http://iopscience.iop.org/0305-4470/23/24/033)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:56

Please note that terms and conditions apply.

ADDENDUM

On possible gradient approximations to the one-dimensional kinetic energy density functional compatible with the differential virial theorem

Jiushu Shao and R Baltin
Department of Theoretical Chemistry, University of Ulm, D-7900 Ulm, Germany

Received 14 September 1990

Abstract

When the kinetic energy density ε_{k} (defined positive definite) of a system of one-dimensional, non-interacting fermions is approximated by an ordinary function of the density ρ, and of the lowest n derivatives of $\rho, \varepsilon_{h} \geqslant 0$ can satisfy the differential virial theorem for arbitrary density distributions only if ε_{k} actually depends on ρ and ρ^{\prime} only. Thus the case $n>1$ is ruled out, and one is left with the result $\varepsilon_{k}=\kappa \rho^{3}+\rho^{\prime 2} /(8 \rho)(\kappa \geqslant 0)$ already obtained in previous work.

The construction of the kinetic energy density functional (KEDF) ε_{k} has been a challenge in density functional theory since its very beginning [1]-[3]. Since it seems impossible to obtain the exact KEDF, one has to resort to approximations.

In one of the most important approximations, $\varepsilon_{k}(x)$ at some point x is expressed by the fermion density ρ and by its lowest derivatives taken as the same point x. In one dimension, this means that

$$
\begin{equation*}
\varepsilon_{k}(x)=f\left(\rho(x), \rho^{\prime}(x), \ldots, \rho^{(n)}(x)\right) \tag{1}
\end{equation*}
$$

with f being an ordinary function of n variables.
For $n=0,1$ and 2, one of the authors [4] investigated the most general function f compatible with the differential virial theorem [5], [6]

$$
\begin{equation*}
\varepsilon_{k}^{\prime}(x)=\frac{1}{8} \rho^{\prime \prime \prime}(x)-\frac{1}{2} V^{\prime}(x) \rho(x) \tag{2}
\end{equation*}
$$

where $V(x)$ is the one-body potential in which the particles are moving. Equation (2) is valid in this form if the positive definite expression

$$
\begin{equation*}
\varepsilon_{k}=\frac{1}{2} \sum_{i=1}^{N}\left|\psi^{\prime}\right|^{2} \geqslant 0 \tag{3}
\end{equation*}
$$

is used for a system of N fermions occupying the bound states ψ_{i} singly up to ψ_{N}.
When equation (2) is combined with the Euler equation of density functional theory the potential can be eliminated yielding [4]

$$
\begin{equation*}
\sum_{v=0}^{n}\left[(-1)^{\prime \prime} \rho \frac{\mathrm{d}^{v+1}}{\mathrm{~d} x^{\prime \prime+1}}\left(\frac{\partial f}{\partial \rho^{(\nu)}}\right)-2 \rho^{(x+1)} \frac{\partial f}{\partial \rho^{(\nu)}}\right]=-\frac{1}{4} \rho^{\prime \prime \prime} . \tag{4}
\end{equation*}
$$

This equation governs the dependence of f upon the variables $\rho, \rho^{\prime}, \ldots, \rho^{(n)}$ which are allowed to take on independently arbitrary values each (except for ρ being $\geqslant 0$). For $n \leqslant 2$, it turned out that

$$
\begin{equation*}
\varepsilon_{k}=\kappa \rho^{3}+\frac{\rho^{\prime 2}}{8 \rho} \tag{5}
\end{equation*}
$$

($\kappa \geqslant 0$ indetermined constant) is the most general expression among the class (1) of functions. Especially, in the case of $n=2$, one finds that $\rho^{\prime \prime}$ actually cannot occur in ε_{k}, on account of the constraint $\varepsilon_{k} \geqslant 0$.

In this addendum, this result is generalized to arbitrary n. Thus we shall prove the following theorem.

Theorem. If ε_{k} is approximated by an expression of the form (1) with $n \geqslant 2$ then the requirements both of
(i) compatibility with the differential virial theorem (2)
(ii) positive definiteness (3)
imply that ε_{k} actually is dependent upon ρ and ρ^{\prime} only, i.e. that ε_{k} is given by (5).
Proof. Introducing the notation

$$
\begin{equation*}
f_{\nu} \equiv \frac{\partial f}{\partial \rho^{(\nu)}} \quad f_{\nu \lambda} \equiv \frac{\partial^{2} f}{\partial \rho^{(\nu)} \partial \rho^{(\lambda)}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta_{\lambda, \nu} \equiv \frac{\mathrm{d}^{\lambda+1} f_{\nu}}{\mathrm{d} x^{\lambda+1}} \tag{7}
\end{equation*}
$$

etc, equation (4) reads

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left[(-1)^{\nu} \rho \Theta_{\nu, \nu}-2 \rho^{(\nu+1)} f_{\nu}\right]=-\frac{1}{4} \rho^{\prime \prime \prime} \tag{8}
\end{equation*}
$$

Let us now look for the highest derivative occurring in $\Theta_{\lambda, \nu}$. For $\lambda=1$ we have that

$$
\begin{align*}
\Theta_{1, \nu} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d} f_{\nu}}{\mathrm{d} x}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sum_{\sigma=0}^{n} f_{\nu \sigma} \rho^{(\sigma+1)}\right) \\
& =\sum_{\tau=0}^{n} \sum_{\sigma=0}^{n} f_{\nu \sigma \tau} \rho^{(\sigma+1)} \rho^{(\sigma+1)}+\sum_{\sigma=0}^{n} f_{\nu \sigma} \rho^{(\sigma+2)} \\
& \equiv R\left(\rho, \rho^{\prime}, \ldots, \rho^{(n+1)}\right)+f_{\nu n}\left(\rho, \rho^{\prime}, \ldots, \rho^{(n)}\right) \rho^{(n+2)} \tag{9}
\end{align*}
$$

where R stands for an expression not further specified which, however, contains no terms with derivatives of order $n+2$. Differentiating further and focusing on the term associated with the highest derivative only we evidently can write

$$
\begin{equation*}
\Theta_{\lambda, v}=R\left(\rho, \rho^{\prime}, \ldots, \rho^{(n+\lambda)}\right)+f_{\nu n}\left(\rho, \rho^{\prime}, \ldots, \rho^{(n)}\right) \rho^{(n+\lambda+1)} . \tag{10}
\end{equation*}
$$

Therefore the only term involving the highest derivative $\rho^{(2 n+1)}$ in equation (8) is given by

$$
\begin{equation*}
(-1)^{n} \rho \Theta_{n, n}=(-1)^{n} \rho\left[R\left(\rho, \rho^{\prime}, \ldots, \rho^{(2 n)}\right)+f_{n n} \rho^{(2 n-1)}\right] \tag{11}
\end{equation*}
$$

(for $n \geqslant 2$). If equation (8) is to hold identically with respect to all variables $\rho, \rho^{\prime}, \ldots, \rho^{(2 n+1)}$ it follows that the coefficient of $\rho^{(2 n+1)}$ has to vanish, i.e.

$$
\begin{equation*}
f_{n n}=\frac{\partial^{2} f}{\partial\left[\rho^{(n)}\right]^{2}} \equiv 0 \tag{12}
\end{equation*}
$$

Thus f must be linear with respect to $\rho^{(n)}$,

$$
\begin{equation*}
\varepsilon_{k}=\alpha\left(\rho, \rho^{\prime}, \ldots, \rho^{(n-1)}\right)+\beta\left(\rho, \rho^{\prime}, \ldots, \rho^{(n-1)}\right) \rho^{(n)} \tag{13}
\end{equation*}
$$

where α and β are some functions not depending on $\rho^{(n)}$.
Condition (3), however, rules out linear dependence of ε_{k} upon $\rho^{(n)}$ (and, likewise, upon any $\rho^{(\nu)}, \nu>0$). Otherwise ε_{k} could become negative for sufficiently negative $\rho^{(n)}$ at some point, in contrast to the requirement that $\varepsilon_{k} \geqslant 0$ for all density functions. Thus

$$
\begin{equation*}
\beta \equiv 0 \tag{14}
\end{equation*}
$$

and hence ε_{k} can depend at most on $\rho, \ldots, \rho^{(n-1)}$. However, repeating the above arguments we finally end up with the result that ε_{k} is allowed to depend on ρ and ρ^{\prime} only. This proves our theorem.

References

[1] Callaway J and March N H 1984 Solid State Phys. 38135
[2] March N H 1955 Proc. Phys. Soc. 70839
[3] Gombas P 1949 Die statistische Theorie des Atoms und ihre Anwendungen (Berlin: Springer)
[4] Baltin R 1987 J. Phys. A: Math. Gen. 20111
[5] March N H and Young W H 1959 Nuclear Phys. 1223
[6] Baltin R 1986 Phys. Lett. 113A 121

