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ADDENDUM 

On possible gradient approximations to the one-dimensional 
kinetic energy density functional compatible with the 
differential virial theorem 

Jiushu Shao and  R Baltin 
Department of Theoretical Chemistry, University of Ulm, D-7900 Ulm, Germany 

Received 14 September 1990 

Abstract. When the kinetic energy density (defined positive definite) of a system of 
one-dimensional, non-interacting fermions is approximated by an ordinary function of the 
density p, and of the lowest n derivatives of p, 2 0  can satisfy the differential virial 
theorem for arbitrary density distributions only if actually depends on p and p '  only. 
Thus the case n > 1 is ruled out, and one is left with the result e k  = ~ p ~ + p ' : / ( S p )  ( K  3 0 )  
already obtained in previous work. 

The construction of the kinetic energy density functional ( KEDF) has been a challenge 
in density functional theory since its very beginning [ 11-[3]. Since it seems impossible 
to obtain the exact KEDF, one has to resort to approximations. 

In one of the most important approximations, E ~ ( x )  at some point x is expressed 
by the fermion density p and by its lowest derivatives taken as the same point x. In 
one dimension, this means that 

Q ( X )  = f ( p ( x ) ,  P ' ( X ) ,  . . . , P ' " ' ( X ) )  (1) 
with f being an  ordinary function of n variables. 

compatible with the differential virial theorem [5], [6] 
For n = 0, 1 and 2, one  of the authors [4] investigated the most general function f 

& k ( X )  = i p " ' ( x )  - $ V ' ( x ) p ( x )  ( 2 )  
where V ( x )  is the one-body potential in which the particles are moving. Equation (2)  
is valid in this form if the positive definite expression 

is used for a system of N fermions occupying the bound states +hl singly up  to +h\ .  

the potential can be eliminated yielding [4] 
When equation ( 2 )  is combined with the Euler equation of density functional theory 

This equation governs the dependence of .f upon the variables p, p ' ,  . . . , p i " )  which 
are allowed to take on independently arbitrary values each (except for p being 3 0 ) .  
For n c 2 ,  it turned out that 

0305-4470/90/245939+03S03.50 a 1990 IOP Publishing Ltd 5939 



5940 J Shao and R Baltin 

( K  3 0  indetermined constant) is the most general expression among the class ( 1 )  of 
functions. Especially, in the case of n = 2, one finds that p” actually cannot occur in 
&kr on account of the constraint & k  2 0. 

In this addendum, this result is generalized to arbitrary n. Thus we shall prove the 
following theorem. 

Theorem. If 
requirements both of 

is approximated by an expression of the form (1)  with n 3 2 then the 

(i) compatibility with the differential virial theorem (2)  
(ii) positive definiteness (3) 

imply that &k actually is dependent upon p and p‘  only, i.e. that & k  is given by (5). 

Proof: Introducing the notation 

and  

d““ fv 
dx“” 

= - 

etc, equation (4) reads 

( 7 )  

Let us now look for the highest derivative occurring in For A = 1 we have that 

n n  n 
- 1 1 f p ” + l ’ p ! “ ’ ” l +  1 f”,,p(u+2) 

= R ( p ,  p’ ,  . . . , p ‘ ” ’ ” ) +  f , , (p,  p ’ ,  . . . , p ‘ “ ’ ) p ‘ n + 2 )  

Y U T  
- 

r=O u = o  r r = O  

(9)  

where R stands for an  expression not further specified which, however, contains no 
terms with derivatives of order n +2 .  Differentiating further and  focusing on the term 
associated with the highest derivative only we evidently can write 

(10) 

Therefore the only term involving the highest derivative p ‘ 2 n + l  in equation (8) is 
given by 

( 1 1 )  

(for n a 2 ) .  If equation (8) is to hold identically with respect to all variables 
p, p’ ,  . . . , p ( 2 ” + 1 )  it follows that the coefficient of p ‘ 2 n - t ” ’  has to vanish, i.e. 

( n + A )  . , p ( n ) ) p ( f l + A + l l  
@ A , , ,  = R(P,  P ’ ,  * * . 9 P 1 +fvn(py P ’ ,  . . 

( - l ) ” p O n , ,  =( - l )”p[R(p ,  p ‘ ,  . . . , p i 2 “ ’ ) +  f n n p ‘ 2 ’ ’ - 1 ’ ]  
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Thus f must be linear with respect to pi" ' ,  

E k  = a ( p ,  p ' ,  . . . , p ' " - " ) + p ( p ,  p ' ,  . . . , p ( " - ' ' ) p ' n )  (13) 

Condition (3) ,  however, rules out linear dependence of E~ upon p '" '  (and, likewise, 
could become negative for sufficiently negative 

0 for all density functions. 

where CY and p are some functions not depending on pi" ' .  

upon any p"', v > O ) .  Otherwise 
p ' " )  at some point, in contrast to the requirement that & k  

Thus 

p = 0  (14) 

and hence E~ can depend at most on p, . . . , p '" - " .  However, repeating the above 
arguments we finally end  u p  with the result that & k  is allowed to depend on p and p' 
only. This proves our theorem. 
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